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The parametric (or model-based) approach to NMR spectroscopy
suffers from two general problems: it is sensitive to modeling errors
and requires knowledge of the number of resonances present in the
compound(s) under analysis. The nonparametric approach has nei-
ther of these drawbacks and it may also be computationally simpler
than the parametric approach. However, if not applied properly, the
nonparametric approach may yield significantly less accurate spec-
troscopic results than the parametric approach. In this paper we
introduce a high-resolution nonparametric methodology for NMR
spectroscopy based on the adaptive filter bank approach. The main
salient feature of the new approach is that it provides 2D spectra
versus both frequency and damping, as opposed to the classical 1D
frequency spectra routinely used in NMR spectroscopy. To show the
power of our new nonparametric approach we compare its perfor-
mance with the ultimate performance of the parametric approach.
We use both simulated and real NMR signals in our numerical per-
formance study. C© 2001 Academic Press

Key Words: magnetic resonance spectroscopy (MRS); nonpara-
metric methods; adaptive filter bank methods; two-dimensional
processing.
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1. INTRODUCTION AND PRELIMINARIES

The NMR signal is often modeled as a sum of damped s
soids:

x(t) =
n∑

k=1

ake(−αk+iωk)t + ε(t), t = 1, 2, . . . . [1]

In [1] n denotes the number of components (or resonan
deemed to be present in the compound(s) under anal
{ak ∈ C}, {αk > 0}, and{ωk ∈ (0, 2π ]} are the amplitudes
damping factors, and (angular) frequencies of these compon
and ε(t) is a noise term that includes both measurement
modeling errors. Note that the sampling interval correspond
to the discrete time data in [1] was absorbed in{αk} and{ωk} to
simplify the notation. In some cases there is a priori informat
1 This work partly supported by the Senior Individual Grant Program of t
Swedish Foundation for Strategic Research (SSF).
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about some parameters in [1] (see, e.g., (1–4)). In other app
tions all parameters in [1] (includingn) are unknown and mus
be estimated from the observed data{x(t)}t=1,...,N (see, e.g., (5–
7)); hereafterN denotes the number of available observatio
In this paper we will focus on the latter case.

The nonlinear least-squares (NLS) method is one of the b
parametricapproaches that can be used to estimate the unkn
parameters in [1]. The NLS estimates are given by the minim
ing arguments of the following loss function:

{âk, α̂k, ω̂k}

= arg min
{ak,αk,ωk}

N∑
t=1

∣∣∣∣x(t)−
n∑

k=1

ake(−αk+iωk)t

∣∣∣∣2. [2]

When the noiseε(t) in [1] is white, circular, and Gaussian th
NLS is asymptotically statistically efficient (see, e.g., (1, 2) and
the references therein). If the noise does not satisfy the prev
conditions, the NLS loses its statistical efficiency but it reta
an appealing robustness usually associated with the LS fit
approaches; in effect, the NLS is one of the most robust pa
metric approaches to deviations from the white Gaussian n
assumption. On the negative side, the NLS requires the us
a nonlinear search algorithm over a 2n-dimensional paramete
space (the minimizer of [2] with respect to{ak}can be obtained in
closed form and hence the dimension of the parameter spac
the problem in [2] can be reduced from 4n to 2n). Additionally,
like any other parametric method, the NLS requires knowled
of n. In the performance study reported under Numerical Exa
ples we compare the newnonparametricapproach introduced in
this paper with the best possible performance of the parame
methods (including the NLS) given by the Cram´er–Rao lower
bound (CRB) (8).

The Fourier transform (FT) method is the most common
usednonparametricapproach for spectroscopic analysis. I
main step consists of computing the FT complex spectrum

X(ω) = 1

N

N∑
t=1

x(t)e−iωt [3]
1090-7807/01 $35.00
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forω ∈ (0, 2π ]. After appropriate phase correction the locatio
of the dominant peaks of Re[X(ω)] are the frequency estimate
{ω̂k} and the area under the peaks are the amplitude estim
{âk}. The estimated spectrum in [3] can be conveniently e
uated using an FFT algorithm. However, the FT suffers fro
number of well-known problems:

(a) Re[X(ω)] is an erratic function ofω, which may hampe
the selection of the right peaks corresponding to the frequen
ωk in the observed data (this is particularly true at low SN
With this observation in mind the fact that the FT requires n
priori knowledge aboutn is no longer a real advantage.

(b) the FT spectrum has poor resolution (two componen
[1] that are closely spaced in frequency may appear as on
single peak in Re[X(ω)]), and it is adversely affected by leaka
effects (for instance, the area under a peak at frequencyω1 may
be a rather poor estimate ofa1 owing to leakage from a stronge
component at a frequency different fromω1).

Problem (b) above is exacerbated for NMR signals. For s
signals the overlapping between the true spectral peaks, o
to nonzero damping factors, may worsen the already poor r
lution of the FT. Moreover, leakage from the water peak in1H
spectroscopy, if not carefully eliminated by data preprocess
may have a detrimental effect on the estimation accuracy
the other spectral peaks. Additionally, note that the FT does
provide any direct estimate of either the amplitudes{ak} or the
damping factors{αk}.

One reason for all these drawbacks of the FT is that this
proach yields 1D frequency spectra and hence ignores the i
mation that the (noise-free) data consist of damped sinus
as opposed to pure sinusoids. A first step toward mitigating
problems of the classical FT is to introduce a 2D FT appro
that is based on 2D spectra versus both frequencyanddamping.
In the next section we derive the 2D FT in the general framew
of thefilter bank approach(FBA). As we explain there the 2D
FT does not eliminate completely the problems of the 1D
due to the fact that the filter bank corresponding to the 2D F
still nonadaptive(i.e., data independent). To fully eliminate t
aforementioned problems we need to take a second step an
anadaptive(i.e., data dependent) filter bank approach. Two m
well-known adaptive FBA methods for 1D frequency spectr
estimation are:

• CAPON (8, 9) (named after the author of (9) who intro-
duced it); and
• APES (10, 11) (APES is an acronym foramplitude and

phaseestimation).

Similarly to the 1D FT, both CAPON and APES could
applied directly to the NMR signal to obtain estimates of{ωk},
but this wouldnot be advisable since the information that t
signal comprises damped sinusoids would again be ignore
particular, no direct estimates of{ak} or {αk} could be obtained

in this way, as explained above for the 1D FT).In this paper we
develop new extensions of the CAPON and APES approac
D SUNDIN
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that are suitable for damped sinusoidal signals in noise(the
versions of CAPON and APES previously proposed in the li
ature assume purely (undamped) sinusoidal signals and, a
already said, they are not really suitable for NMR signals).
so-obtained 2D CAPON and 2D APES arenonparametricFB
approaches that do not suffer from any of the aforementio
problems of the FT. In particular, these methods posses
following desirable properties:

(i) their estimated spectra are relatively smooth, which ma
it easy to choose the right peaks corresponding to the
{αk, ωk} even at low SNR;

(ii) the resolution of these methods is excellent (by their
nature they can resolve peaks that overlap to a large exte
the 1D frequency spectrum);

(iii) owing to their adaptive nature these methods are alm
leakage-free (they can even be applied in the presence o
water signal); and

(iv) they provide estimates not only of{ωk} but also of{ak}
and{αk}; moreover, the accuracy of these estimates is com
rable with that corresponding to a good parametric appro
(such as the NLS outlined above), under the ideal condi
that the data model in [1] holds (required by the parame
approach).

When we add to the above features the robustness of the
parametric methods to mismodeling and reiterate the fact
these methods do not require any a priori information aboun,
it becomes quite clear that the novel nonparametric approa
this paper is a valid alternative to the parametric approach
NMR spectroscopy.

2. THE 2D FILTER BANK APPROACH

Let

y(t) = [x(t) · · · x(t + M − 1)]T , t = 1, 2, . . . , L , [4]

whereM > 1 is a user parameter (the choice of which will
discussed under Numerical Examples), and

L = N − M + 1. [5]

Also, leth(α, ω) ∈ CM×1 denote the coefficient vector of an FI
filter (to be applied to{x(t)}) which is such that:

(C1) the damped sinusoid{ae(−α+iω)t } passes undistorte
through the filter; and

(C2) other components in the data{x(t)} (for example, the
noise and other damped sinusoids) are suppressed as mu
possible by the filter.

Note that such a filter must depend onα andω, a fact which
was indicated above by the use of the notationh(α, ω). Also
note that asα andω vary {h(α, ω)} will form a bank of filters,
hes
which gives the name of FBA to the approach based on{h(α, ω)}.
Assuming thath(α, ω) is available we can write the filter output
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the number of data samples (there areM −1 more data samples
in the raw data).2 This is thebasic ideaunderlying the FBA.

2 Observe that, owing to the manner in which we implemented the filtering
NONPARAMETRIC N

as

h∗(α, ω)y(t) = ae(−α+iω)t + w(t), t = 1, 2, . . . , L , [6]

where the superscript∗ denotes the conjugate transpose, a
w(t) is a residual term. The LS estimate of the amplitudea in
[6] is (for givenα andω)

â(α, ω) = h∗(α, ω)Y(α, ω), [7]

where

Y(α, ω) = 1

L(α)

L∑
t=1

[y(t)e−αt ]e−iωt [8]

and where

L(α) =
L∑

t=1

e−2αt = e−2α e−2αL − 1

e−2α − 1
. [9]

Note that the numerator in [8] can be evaluated as a functio
ω, for each value ofα considered, by using an FFT algorithm
Let

E(α, ω)
4= |â(α, ω)|2L(α) [10]

denote the FBA 2D (estimated)energy spectrum. The FBA esti-
mates{α̂k, ω̂k} are obtained as the locations of the domin
peaks ofE(α, ω) (note thatn is also estimated in the pro
cess of peak picking) and the estimates of{ak} are given by
{âk = â(α̂k, ω̂k)}.

Remark 1. We might think of using the estimatedamplitude
spectrum A(α, ω)

4= |â(α, ω)| to obtain the estimates{α̂k, ω̂k}.
Under Numerical examples this possibility is examined a
the results show that the energy and amplitude spectrum-b
methods give similar results. However, the estimates obta
using the amplitude spectrum are slightly worse for low S
cases and therefore the energy spectrum was preferred (see
Fig. 7 and Fig. 8).

Remark 2. As already stated̂a(α, ω) in [7] is the minimizer
of the LS criterion:

L∑
t=1

∣∣h∗(α, ω)y(t)− ae(−α+iω)t
∣∣2. [11]
Then we might think of insertinĝa(α, ω) in [11] and estimate
the corresponding pair (α, ω) by minimizing the resulting LS
MR SPECTROSCOPY 59
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criterion,

L∑
t=1

∣∣h∗(α, ω)y(t)− â(α, ω)e(−α+iω)t
∣∣2

=
L∑

t=1

|h∗(α, ω)y(t)|2− |â(α, ω)|2L(α)

=
L∑

t=1

|h∗(α, ω)y(t)|2− E(α, ω). [12]

However, we donotrecommend this way of estimating{αk, ωk}.
A general reason for this (not necessarily related to NMR ap
cations) can be explained as follows. Let us assume, for the
of making our point, that for some given ( ¯α, ω̄) the left-hand
side of [6] is very small:h∗(ᾱ, ω̄)y(t) ≈ 0 (for t = 1, . . . , L).
This means that there is hardly any damped sinusoid in the
at this particular damping-frequency pair ( ¯α, ω̄). A consequence
of this is that the LS criterion in [12] will take on a very sma
value at (ᾱ, ω̄), and hence this pair may well be preferred
a true damping-frequency pair at which the criterion [12] m
have a larger value.

In summary, estimating{αk, ωk} by picking the dominant
peaks of the energy spectrumE(α, ω) is a more sensible thing
to do than picking the deepest valleys of the criterion in [12

Next we turn our attention to the conditions C1 and C2 ab
that must be satisfied byh(α, ω). Satisfying C1 is easy. Let

s(α, ω) = [1e−α+iω · · ·e(−α+iω)(M−1)
]T
. [13]

When the filterh(α, ω) is fed withae(−α+iω)t its output is given
by

[h∗(α, ω)s(α, ω)]ae(−α+iω)t . [14]

It follows that C1 is satisfied if and only if

h∗(α, ω)s(α, ω) = 1. [15]

Unlike C1, there is no unique way to formulate C2 mathem
ically. In the next subsections we show how different ways
formulating C2 lead to different FBA methods. Here we note t
the importance of C2 cannot be emphasized enough. If the
significantly enhances the currently considered damped sinu
at (α, ω), then the SNR for this component in the filter outp
[6] will be much higher than in the raw data. Consequently,
estimation of{ak, αk, ωk} may well be done more accurate
from the filtered data than from the raw data, despite a los
(see [4]–[5]), we lose samples from the tail of the data string. As the SNR of
those samples is typically rather low, this is not a big loss.
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2.1. 2D FT

The 2D FT corresponds to the choice

hFT(α, ω) = s(α, ω)

‖s(α, ω)‖2 , [16]

where

‖s(α, ω)‖2 = e−2αM − 1

e−2α − 1
. [17]

Obviously [16] satisfies the condition C1 in [15]. However, t
above filterhFT (α, ω) does not have good rejection properti
(see C2). In particular, note that [16] is nonadaptive and he
a strong component with damping and frequency different fr
(α, ω) may well leak through the filter and seriously disturb t
estimation of the amplitude at (α, ω). To alleviate this leakage
problem we should consideradaptivefilters, as described in the
next subsections. To end this subsection we remark on the
that for M = 1 the present approach reduces to the “nonav
aged” (or “nonsmoothed”) 2D FT,

â(α, ω) =
∑N

t=1[x(t)e−αt ]e−iωt∑N
t=1 e−2αt

, [18]

which, in turn, reduces forα = 0 to the classical 1D FT in [3].

2.2. 2D CAPON

The filter bank associated with the 2D CAPON method is
solution to the following design problem,

min
h(α,ω)

L∑
t=1

|h∗(α, ω)y(t)|2 [19]

subject to the condition C1,

h∗(α, ω)s(α, ω) = 1. [20]

The criterion in [19] can be rewritten as

L∑
t=1

|h∗(α, ω)y(t)|2 = h∗(α, ω)Rh(α, ω), [21]

where

R=
L∑

t=1

y(t)y∗(t). [22]

Minimization of the sample energy of the filter output as in [1

under C1, should yield a filter with good rejection/enhanci
properties. The solution to the linearly constrained quadra
D SUNDIN
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problem in [19] and [20] is given by (see, e.g., (8, 9))

hCAPON(α, ω) = R−1s(α, ω)

s∗(α, ω)R−1s(α, ω)
. [23]

Note that

s(α, ω) =


1 0

e−α
...

0 e−α(M−1)




1
eiω

...
eiω(M−1)

 , [24]

where [1eiω · · ·eiω(M−1)]T is the 1D FT vector. Hence, for
any givenα, we can redefineR−1 appropriately and compute
hCAPON(α, ω) and the correspondinĝa(α, ω) in [7] as functions
of ω by using the fast 1D CAPON algorithm in (12).

2.3. 2D APES

In the 2D APES approach C2 is formulated in words as f
lows: h(α, ω) should be such that the filter outputh∗(α, ω)y(t)
is as close as possible in the LS sense to a damped sinu
ae(−α+iω)t with the given damping and frequency (α, ω) and
amplitudea that minimizes the LS fitting error. Mathematically
for given α andω, we obtainhAPES(α, ω) and âAPES(α, ω) by
minimizing the LS criterion,

L∑
t=1

∣∣h∗(α, ω)y(t)− ae(−α+iω)t
∣∣2 [25]

subject to the condition C1 (see [20]). The 2D APES estim
of a(α, ω) is readily seen to have the form of the general FB
estimate in [7]. Inserting [7] in the criterion function yields

L∑
t=1

∣∣h∗(α, ω)
[
y(t)− Y(α, ω)e(−α+iω)t

]∣∣2
= h∗(α, ω)[R− 2L(α)Y(α, ω)Y∗(α, ω)

+ L(α)Y(α, ω)Y∗(α, ω)]h(α, ω)

= h∗(α, ω)Q(α, ω)h(α, ω), [26]

where

Q(α, ω) = R− L(α)Y(α, ω)Y∗(α, ω). [27]

It follows thathAPES(α, ω) is the solution to the following opti-
mization problem,

min
h(α,ω)

h∗(α, ω)Q(α, ω)h(α, ω)

ng
tic subject toh∗(α, ω)s(α, ω) = 1, [28]
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which has same form as the CAPON filter design problem (w
the only difference thatR in [21] is replaced byQ(α, ω) here).
Hence, the solution to [28] is similarly to [23] given by

hAPES= Q−1(α, ω)s(α, ω)

s∗(α, ω)Q−1(α, ω)s(α, ω)
. [29]

To avoid the calculation of the inverse in [29] for every p
(α, ω) considered, we use the matrix inversion lemma (see,
(8)) to write

Q−1(α, ω) = R−1+ R−1L(α)Y(α, ω)Y∗(α, ω)R−1

1− L(α)Y∗(α, ω)R−1Y(α, ω)
. [30]

Combining [29] and [30] gives a formula for the 2D APES filt
bank that is not much more computationally involved than
formula in [30] corresponding to the 2D CAPON.

2.4. 2D CAPES

There is empirical evidence (see, e.g., (13) for the undamped
sinusoid case) which suggests that CAPON has a (sligh
higher resolution than APES and also that the CAPON estim
of the {αk, ωk} are more accurate than the APES estimate
these parameters. On the other hand, for a given set of estim
{α̂k, ω̂k} in the vicinity of the true values{αk, ωk}, the APES
estimates of the amplitudes{ak} are (much) more accurate tha
the CAPON estimates of{ak}. Consequently, the nonparame
ric approach we propose for NMR spectroscopy consists o
following combination of 2D CAPON and 2D APES, which w
call 2D CAPES.

Nonparametric NMR Spectroscopy via 2D CAPES

Step 1. Obtain estimates of{αk, ωk} as the locations o
the dominant peaks of the 2D CAPON energy spectr
|h∗CAPON(α, ω)Y(α, ω)|2L(α) with hCAPON(α, ω) given by [23]
andY(α, ω) by [8] and [9]. Note that the required peak pickin
at the level of SNR encountered in NMR applications, is usu
easily done (see the illustrations under Numerical Example

Step 2. Estimate the amplitudes{ak} asâk = h∗APES(α̂k, ω̂k)
Y(α̂k, ω̂k), where{α̂k, ω̂k} are the estimates of{αk, ωk} obtained
in Step 1, andhAPES(α, ω) is given by [29] and [30].

The computational burden of 2D CAPES is similar to that
2D CAPON and hence smaller than that of the 2D APES. E
so, as already stated, the statistical performance of 2D CA
is typically better than that of both 2D CAPON and 2D APE

Compared with the 1D nonparametric approach (such as
1D FT), the computational burden of our 2D CAPES is of cou
(much) larger. In fact to keep the computational burden of
CAPES under a reasonable limit a careful implementatio

required.An efficient Matlab code for 2D CAPES is availab
from the authors on request.
MR SPECTROSCOPY 61
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3. NUMERICAL EXAMPLES

In this section 2D CAPES is applied to both real NMR da
and simulated data with the objective of examining its resolut
properties and estimation accuracy.

Simulated Signal Examples

First the high resolution of the 2D CAPON energy spectru
is illustrated using a simulated two-peak example with the p
rameters (see the model in [1])

ω1 = 0.1885, ω2 = 0.2136

α1 = 0.0160, α2 = 0.0260

a1 = 1.0000, a2 = 2.5000

N = 512

σ 2 = 0.0010, [31]

whereσ 2 denotes the variance of the white, circular, Gauss
noise sequence,ε(t). The real value of the 1D FT spectrum o
the simulated signal is plotted in Fig. 1. From the figure it is cle
that the two closely spaced peaks are not resolved by the 1D
It is possible to improve the resolution of the 1D FT by using
Lorenz-to-Gauss transformation of the time domain data:

xG(t) = x(t)eα0t−β0t2
. [32]

The best possible resolution is obtained ifα0 is set equal to the
{αk} of the peaks in the data. Since in general the{αk} are not
identical and they are also unknown, the choice of a suitableα0

is not straightforward. In practice, the user has to tune theα0 and

FIG. 1. Real value of the 1D FT spectrum for the simulated two-peak e

leample:a1 = 1,a2 = 2.5,ω1 = 0.1885,ω2 = 0.2136,α1 = 0.016,α2 = 0.026,

N = 512.
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FIG. 2. 2D CAPON energy spectrum for the simulated two-peak exama
M = 240.

β0 parameters by hand to obtain an enhanced resolution. In F
the 1D FT of the so-called Gaussian-filtered data in [32] is a
plotted. Note that the parameters were tuned to obtain the h
est possible resolution resulting in a slight improvement o
the 1D FT spectrum. In Fig. 2 the corresponding 2D CAP
energy spectrum using a filter length ofM = 240 is plotted.
The high resolution of 2D CAPON is illustrated by the abil
to resolve the two peaks inboththe frequencyandthe damping
dimensions. To allow the reader to appreciate the resolution
pabilities and to simplify the comparison of the peak locati
with the true parameters the same 2D spectrum seen from a
is plotted in Fig. 3. Finally the 2D CAPON spectrum view
from the frequency axis (taking the maximum value of the
ergy in the damping dimension for each frequency grid po
can be found in Fig. 4. Note that this last plot does not con
all the information available in the 2D energy spectrum but
still be useful for comparison with the commonly used 1D
spectrum in Fig. 1. In summary, this simple example shows
the resolution of the CAPON energy spectrum is much hig
than that of the 1D FT even if the data are Gaussian filtered.
choice of the CAPON user parameter,M , is also much simple
than the choice of the parameters associated with the Gau
filtering procedure in [32].

Next the influence of the user parameterM (i.e., the FIR filter
length) on the estimation accuracy is examined. The choic
filter length is based on a trade-off between the resolution c
bilities and the variance of the parameter estimates. To illus
this trade-off the frequency separation,1ω

4= ω2 − ω1, in the

above two-peak example was varied. Estimates of the para
ters of peak 1 were obtained from 100 independent simula
le:= 1, a2 = 2.5,ω1 = 0.1885,ω2 = 0.2136,α1 = 0.016,α2 = 0.026,N = 512,
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runs using different filter lengths,M . The variance of the noise
was chosen so that the SNR for peak 1 was 15 dB where
SNR is defined as the ratio of the power of the component to
noise power:

1

N

N∑
t=1

|a1|2e−2α1t
/
σ 2 4= SNR. [33]

The estimated root mean square error (RMSE) and bias oâ1

andω̂1 are given in Fig. 5 and Fig. 6, respectively. The results
α1 were similar to the results fora1 and are therefore omitted. I
can be seen that the bias of the estimates, as expected, dec
as a function of the filter length. At the same time the varian
of the parameter estimates increases as a function of the
length. However, since the variance increases relatively slo
compared to the decreasing bias, the RMSE error curves
reasonably flat for sufficiently high filter lengths (i.e., forM
large enough to resolve the two peaks). It is in fact evident
the optimal filter length increases as the frequency separa
between the peaks decreases. Therefore the choice of a rela
large M is recommended in general (in practice betweenN/3
andN/2). For difficult scenarios the filter length can be chos
close to the upper limitN/2.

Finally the estimation accuracy of the 2D CAPES method
compared to the CRB. Estimates of the parameters of peak
ω1 = 0.1885 (forω2 = 0.2199) were obtained from 100 inde
pendent simulation runs for different noise levels using a fi
length ofM = 180. The results forα1 anda1 are given in Fig. 7

me-
tion
and Fig. 8, respectively. Note that results obtained from both
the amplitude spectrum and the energy spectrum are given, for
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FIG. 3. Top view of the 2D CAPON energy spectrum for the simulated two-peak example:a1 = 1, a2 = 2.5, ω1 = 0.1885,ω2 = 0.2136,α1 = 0.016,

b
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n-
FT

tion
α2 = 0.026,N = 512,M = 240.

comparative purposes. The figures indicate a slightly lower
for estimates obtained by the energy spectrum, thereby sug
ing that the energy spectrum should be the preferred choice
Remark 1 under The 2D Filter Bank Approach). The parame
NLS method (e.g. (1, 2)) is expected (but not guaranteed) to ha
an accuracy close to the CRB under the above ideal simula
conditions (i.e., white, circular, and Gaussian noise and no m

FIG. 4. 1D frequency view of the 2D CAPON energy spectrum for

simulated two-peak example:a1 = 1, a2 = 2.5, ω1 = 0.1885,ω2 = 0.2136,
α1 = 0.016,α2 = 0.026,N = 512,M = 240.
ias
est-

(see
ric
e

tion
od-

e

eling errors). The RMSE (based on the energy spectrum) o
CAPES is seen to be also reasonably close to the CRB.

Real NMR Signal Examples

In this section the resolution capability of the 2D CAPON e
ergy spectrum is compared to that of the commonly used 1D

FIG. 5. RMSE and bias of 2D CAPES amplitude estimates as a func
of filter lengthM for different frequency separations1ω in a two-peak simu-

lation example. The results were obtained from 100 simulation runs for each
combination ofM and1ω.
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FIG. 6. RMSE and bias of 2D CAPES frequency estimates as a func
of filter lengthM for different frequency separations1ω in a two-peak simu-
lation example. The results were obtained from 100 simulation runs for e
combination ofM and1ω.

using real NMR data sets. Since the model and noise assu
tions can no longer be expected to hold exactly, these exam
provide a more realistic comparison between the methods.
first data set is taken from a standard GE spectroscopic phan
with a low-concentration additional GABA solution. The pha
tom contains 12.5 mM NAA, 10.0 mM Cr, 3.0 mM Ch, 7.5 mM
mI, 12.5 mM Glu (L-glutamic acid), 5 mMlactate, and 0.5 mM
GABA. Data were acquired on a 1.5-T GE Signa clinical M

FIG. 7. RMSE and bias of 2D CAPES damping estimates (M = 180) as
a function of SNR for the two-peak simulation example. The estimates w

obtained from 100 simulation runs for each SNR level using both the ene
spectrum and the amplitude spectrum. The RMSE is also compared to the C
D SUNDIN

ion

ach

mp-
ples
The
tom
-

I

ere

FIG. 8. RMSE and bias of 2D CAPES amplitude estimates (M = 180) as
a function of SNR for the two-peak simulation example. The estimates w
obtained from 100 simulation runs for each SNR level using both the ene
spectrum and the amplitude spectrum. The RMSE is also compared to the C

scanner equipped with 40 mT/m gradients at a 150 T/m/s s
rate. The single-voxel acquisition protocol on the scanner (16)
implements a PRESS (14) excitation, preceded by CHESS (15)
water suppression. Timing parameters were TE= 144 ms and
TR= 1500 ms, and voxel size was 8 cc. Reference data (8 FI
two averages each) were acquired without water suppress
while the metabolite data were acquired with CHESS water s
pression (32 FIDs, two averages each). The spectral bandw
was 2500 Hz;N = 2048 points were sampled for each rea
out. The metabolite data were phase-corrected by subtracting
estimated phase obtained from the high-SNR reference sig
(see, e.g., (17, 18). In Fig. 9 the phase-corrected 1D FT spectru
for the region of interest is given where the peaks identified
numbers correspond to the following: 1, 5,myo-inositol; 2, 7,
creatine; 3, 4, 12–15, glutamate; 6, choline, 8–11, 16, NAA; a
17, 18, lactate (the lactate peaks are negative for TE= 144 ms
due to the coupled spin). Note that Gaussian filtering was
plied to the data but since no significant resolution enhancem
could be observed the corresponding 1D FT spectrum was
included. In Fig. 10 the 2D CAPON energy spectrum (M = 950)
for the same signal is given. The resolution is much enhan
compared to the 1D FT spectrum. Note in particular the
gion between 2.1 and 2.8 ppm where the small-amplitude N
and glutamate peaks are nicely resolved. It is also interes
to note that the 2D CAPON spectrum shows that the resid
water peak consists of more than one damped sinusoid whe
the other peaks seem pretty well described by single dam
sinusoids. That kind of information can not be deducted fro
the 1D FT spectrum. Furthermore this proves the robustn
of our nonparametric approach as compared to parametric

rgy
RB.

mation methods which require the use of postprocessing water
suppression techniques to handle the model imperfections of the
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FIG. 9. Phase-corrected 1D FT spectrum obtained from a standard GE
troscopic phantom. The phantom contains 12.5 mM NAA, 10.0 mM Cr, 3.0
Ch, 7.5 mM mI, 12.5 mM Glu (L-glutamic acid), 5 mM lactate, and 0.5 mM
GABA. The signal was acquired on a 1.5-T GE Signa scanner using a PRES
quence (TE/TR= 144/1500 ms) preceded by CHESS water suppression (v
size 8 cc). The peaks identified by numbers correspond to the following:

myo-inositol; 2,7, creatine; 3,4, 12–15, glutamate; 6, choline; 8–11, 16, NAA;
and 17,18, lactate.

mM Cr,
PRESS

the theoretical values. This makes an exact comparison of the
estimated amplitude ratios rather difficult. The results, however,
FIG. 10. 2D CAPON energy spectrum (M = 950) obtained from a standard GE spectroscopic phantom. The phantom contains 12.5 mM NAA, 10.0
3.0 mM Ch, 7.5 mM mI, 12.5 mM Glu (L-glutamic acid), 5 mM lactate, and 0.5 mM GABA. The signal was acquired on a 1.5-T GE Signa scanner using a

sequence (TE/TR= 144/1500 ms) preceded by CHESS water suppression
myo-inositol; 2,7, creatine; 3,4, 12–15, glutamate; 6, choline; 8–11, 16, NAA
R SPECTROSCOPY 65

pec-
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residual water peak. The high resolution in both the freque
and damping domains can also be seen in Fig. 11 where
same 2D CAPON spectrum is plotted viewed from above.
completeness the 2D CAPON spectrum is also plotted as vie
from the frequency axis in Fig. 12. Even though the resolu
cannot be fully appreciated using this 1D view the resembla
with the 1D FT spectrum in Fig. 9 gives some insight and m
be useful to identify the peaks for spectroscopists more fa
iar with standard 1D FT spectra. We remind the reader tha
height of the peaks in the 2D CAPON energy spectrum sh
not be considered direct estimates of the energies (or ind
amplitude estimates). In fact, when applying the 2D CAPES
gorithm, only the frequency and damping estimates are obta
from the 2D CAPON energy spectrum. The amplitude estim
are instead obtained using the 2D APES algorithm (see Step
the 2D CAPES algorithm in the previous section), and these
mates are usually significantly better. In Table 1 the CAPON
CAPES amplitude estimates are given for the dominant p
6, 7, and 16. The theoretical amplitude ratios of these p
can be computed since the concentrations of the contents o
spectral phantom are known. Note that the data were acq
at TE= 144 ms; therefore, due to the different relaxation tim
of the metabolites, the actual amplitude ratios are different f
(voxel size 8 cc). The peaks identified by numbers correspond to the following: 1,5,
; and 17,18, lactate.
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FIG. 11. Top view of the 2D CAPON energy spectrum (M = 950) obtained from a standard GE spectroscopic phantom. The phantom contains 12
NAA, 10.0 mM Cr, 3.0 mM Ch, 7.5 mM mI, 12.5 mM Glu (L-glutamic acid), 5 mM lactate, and 0.5 mM GABA. The signal was acquired on a 1.5-T GE S

scanner using a PRESS sequence (TE/TR= 144/1500 ms) preceded by CHESS water suppression (voxel size 8 cc). The peaks identified by numbers correspond

u
n
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r

yrus
T GE
y
points
isition
ing:

1,8, creatine; 2–4, 13–15, glutamate; 5,myo-inositol; 7, choline; and 9–12, 16,
to the following: 1,5,myo-inositol; 2,7, creatine; 3,4, 12–15, glutamate; 6, ch

FIG. 12. 1D frequency domain view of the 2D CAPON energy spectr
(M = 950) obtained from a standard GE spectroscopic phantom. The pha
contains 12.5 mM NAA, 10.0 mM Cr, 3.0 mM Ch, 7.5 mM mI, 12.5 mM G
(L-glutamic acid), 5 mM lactate, and 0.5 mM GABA. The signal was acqui
on a 1.5-T GE Signa scanner using a PRESS sequence (TE/TR= 144/1500 ms)
preceded by CHESS water suppression (voxel size 8 cc). The peaks iden

by numbers correspond to the following: 1,5,myo-inositol; 2,7, creatine; 3,4,
12–15, glutamate; 6, choline, 8–11, 16, NAA; and 17,18, lactate.
oline; 8–11, 16, NAA; and 17,18, lactate.

m
tom

u
ed

tified

FIG. 13. Phase-corrected 1D FT spectrum from the anterior cingulate g
of a 29-year-old healthy male subject. The signal was acquired on a 1.5-
Signa scanner using a PRESS sequence (TE/TR= 35/2000 ms) preceded b
CHESS water suppression. The spectral bandwidth was 2500 Hz; 2048
were sampled for each readout, the voxel size is 6 cc, and the total acqu
time is 2 min 40 s. The peaks identified by numbers correspond to the follow
NAA.
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FIG. 14. 2D CAPON energy spectrum (M = 1000) from the anterior cingulate gyrus of a 29-year-old healthy male subject. The signal was acquired on
GE Signa scanner using a PRESS sequence (TE/TR= 35/2000 ms) preceded by CHESS water suppression. The spectral bandwidth was 2500 Hz; 204
were sampled for each readout, the voxel size is 6 cc, and the total acquisition time is 2 min 40 s. The peaks identified by numbers correspond to thing:
1,8, creatine; 2–4, 13–15, glutamate; 5,myo-inositol; 7, choline; and 9–12, 16, NAA.

FIG. 15. Top view of the 2D CAPON energy spectrum (M = 1000) from the anterior cingulate gyrus of a 29-year-old healthy male subject. The signa
acquired on a 1.5-T GE Signa scanner using a PRESS sequence (TE/TR= 35/2000 ms) preceded by CHESS water suppression. The spectral bandwidth was 25

2048 points were sampled for each readout, the voxel size is 6 cc, and the total acquisition time is 2 min 40 s. The peaks identified by numbers correspond to the
following: 1,8, creatine; 2–4, 13–15, glutamate; 5,myo-inositol; 7, choline; and 9–12, 16, NAA.
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TABLE 1
CAPON and CAPES Amplitude Estimates for the Main Peaks of

the GE Spectroscopic Phantom Spectrum Displayed in Fig. 10

CAPON CAPES Expected
ratio (TE= 0)

Peak Substance âk âk/â7 âk âk/â7 ak/a7

16 NAA 1.55× 106 1.05 3.92× 106 1.29 1.3
7 Creatine 1.47× 106 1 3.03× 106 1 1
6 Choline 1.41× 106 0.96 2.57× 106 0.84 0.9

confirm that the CAPES amplitude estimates are likely to
better than the CAPON amplitude estimates as the CAPES
plitude ratio estimates are closer to what could be expected
the spectroscopic phantom data.

Finally we consider a set ofin vivodata taken from the anterio
cingulate gyrus of a 29-year-old healthy male. The signal
acquired on a 1.5-T GE Signa scanner using a PRESS sequ
(TE/TR= 35/2000 ms) preceded by CHESS water suppress
Reference data (8 FIDs, two averages each) were acquired
out water suppression, while the metabolite data were acqu
with CHESS water suppression (32 FIDs, two averages ea
The spectral bandwidth was 2500 Hz;N = 2048 points were
sampled for each readout. The voxel size was 6 cc and
acquisition time was 2 min 40 s. The phase-corrected 1D
spectrum is plotted in Fig. 13. The peaks identified by numb

FIG. 16. 1D frequency domain view of the 2D CAPON energy spectr
(M = 1000) from the anterior cingulate gyrus of a 29-year-old healthy m
subject. The signal was acquired on a 1.5-T GE Signa scanner using a P
sequence (TE/TR= 35/2000 ms) preceded by CHESS water suppression.
spectral bandwidth was 2500 Hz; 2048 points were sampled for each rea
the voxel size is 6 cc, and the total acquisition time is 2 min 40 s. The p

identified by numbers correspond to the following: 1,8, creatine; 2–4, 13–
glutamate; 5,myo-inositol; 7, choline; and 9–12, 16, NAA.
D SUNDIN
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correspond to the following: 1,8, creatine; 2–4, 13–15, glu
mate; 5,myo-inositol; 7, choline; and 9–12, 16, NAA. Note th
the spectrum is relatively noisy and that the resolution is q
poor. The resolution was not visually improved using Gauss
filtering (which therefore was omitted from the figures). T
2D CAPON spectrum (M = 1000) is plotted in Fig. 14 and
the same spectrum seen from above is displayed in Fig. 1
can be seen that all the identified peaks are resolved and
mates of the frequency and damping parameters can eas
obtained. Note that a filter order close toN/2 was used to achiev
this high-resolution spectrum. For comparison the 2D CAP
spectrum is also shown as viewed from the frequency axi
Fig. 16. Even though this 1D view of the 2D spectrum sho
a better resolution than that of the 1D FT it is clear that
ability to separate the peaks in two dimensions is essentia
visualizing the spectrum of such difficult, realisticin vivoNMR
signals.

4. CONCLUDING REMARKS

The 2D CAPES method provides a 2D interpretation of NM
spectroscopy data by separating the resonance peaks in bo
frequency and the damping domain. The resolution prope
are much better than those for the 1D FT even if resolution
hancement techniques such as Gaussian filtering are ap
The 2D spectrum does not require any phasing or baseline
rection and does not suffer from any data truncation base
effects. Furthermore, the choice of its user parameter,M , is
much simpler than the choice of the parameters involved w
other techniques such as Gaussian filtering. The method is
able for visualizing most kinds of NMR signals. In particular
can be very useful for low-field NMR spectroscopy where
SNR is low or in cases where there is a strong water signal w
severely distorts the 1D FT spectrum.

The parameter estimates obtained by the nonparametri
CAPES method are comparable to those obtained by the
parametric methods (such as the NLS). Compared with the
ter, 2D CAPES has the significant advantage of being robu
mismodeling. The 2D CAPES method can be used as a st
alone estimation method or in combination with some param
ric methods. In the latter case 2D CAPES can provide estim
of the frequency and damping parameters that could be us
initial values for the nonlinear search associated with the N
algorithms.
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