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The parametric (or model-based) approach to NMR spectroscopy
suffers from two general problems: it is sensitive to modeling errors
and requires knowledge of the number of resonances present in the
compound(s) under analysis. The nonparametric approach has nei-
ther of these drawbacks and it may also be computationally simpler
than the parametric approach. However, if not applied properly, the
nonparametric approach may yield significantly less accurate spec-
troscopic results than the parametric approach. In this paper we
introduce a high-resolution nonparametric methodology for NMR
spectroscopy based on the adaptive filter bank approach. The main
salient feature of the new approach is that it provides 2D spectra
versus both frequency and damping, as opposed to the classical 1D
frequency spectra routinely used in NMR spectroscopy. To show the
power of our new nonparametric approach we compare its perfor-
mance with the ultimate performance of the parametric approach.
We use both simulated and real NMR signals in our numerical per-
formance study. © 2001 Academic Press

Key Words: magnetic resonance spectroscopy (MRS); nonpara-
metric methods; adaptive filter bank methods; two-dimensional
processing.

1. INTRODUCTION AND PRELIMINARIES

about some parametersin [1] (see, e.g., (1-4)). In other applic
tions all parameters in [1] (including) are unknown and must
be estimated from the observed dgté)}—1 ..~ (See, e.g., (5-
7)); hereafteN denotes the number of available observations
In this paper we will focus on the latter case.

The nonlinear least-squares (NLS) method is one of the be
parametricapproaches that can be used to estimate the unknov
parameters in [1]. The NLS estimates are given by the minimiz
ing arguments of the following loss function:

{8, duc, k)
2

N n
—arg min x(t) — glraHmgt 2
g{ak,ak,wk}; ® ;ak [2]

When the noise(t) in [1] is white, circular, and Gaussian the
NLS is asymptotically statistically efficient (see, e.4.,%) and
the references therein). If the noise does not satisfy the previol
conditions, the NLS loses its statistical efficiency but it retains
an appealing robustness usually associated with the LS fittin
approaches; in effect, the NLS is one of the most robust par:
metric approaches to deviations from the white Gaussian nois
assumption. On the negative side, the NLS requires the use

The NMR signal is often modeled as a sum of damped sina-nonlinear search algorithm over a-@8imensional parameter

soids:

n
X(t) =Y ae e pet), t=12... [1]
k=1

space (the minimizer of [2] with respect{i} can be obtained in
closed form and hence the dimension of the parameter space |
the problem in [2] can be reduced from tb 2n). Additionally,
like any other parametric method, the NLS requires knowledg
of n. In the performance study reported under Numerical Exam

In [1] n denotes the number of components (or resonancgdds we compare the nevonparametri@pproach introduced in
deemed to be present in the compound(s) under analy$igs paper with the best possible performance of the parametr
{ax € C}, {ax > 0}, and{wx € (0, 2]} are the amplitudes, methods (including the NLS) given by the CrarmRao lower
damping factors, and (angular) frequencies of these componehtzind (CRB) 8).

ande(t) is a noise term that includes both measurement andThe Fourier transform (FT) method is the most commonly
modeling errors. Note that the sampling interval correspondinged nonparametricapproach for spectroscopic analysis. Its

to the discrete time data in [1] was absorbeduig} and{wy} to

main step consists of computing the FT complex spectrum

simplify the notation. In some cases there is a priori information

1 This work partly supported by the Senior Individual Grant Program of the

Swedish Foundation for Strategic Research (SSF).

N

X(w) = % > o x(te [3]

t=1
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for w € (0, 27]. After appropriate phase correction the locationthat are suitable for damped sinusoidal signals in najge
of the dominant peaks of RE[w)] are the frequency estimatesversions of CAPON and APES previously proposed in the liter-
{awx} and the area under the peaks are the amplitude estimatese assume purely (undamped) sinusoidal signals and, as \
{&}. The estimated spectrum in [3] can be conveniently evaliready said, they are not really suitable for NMR signals). The
uated using an FFT algorithm. However, the FT suffers fromsm-obtained 2D CAPON and 2D APES arenparametric-B
number of well-known problems: approaches that do not suffer from any of the aforementione

(@) RelX(w)] is an erratic function of, which may hamper problems of the FT. In particular, these methods possess tt
' following desirable properties:

the selection of the right peaks corresponding to the frequencies

wk in the observed data (this is particularly true at low SNR). (i) their estimated spectra are relatively smooth, which make
With this observation in mind the fact that the FT requires noiaeasy to choose the right peaks corresponding to the tru
priori knowledge about is no longer a real advantage. {ak, wx} even at low SNR;

(b) the FT spectrum has poor resolution (two components in(ii) the resolution of these methods is excellent (by their 2D
[1] that are closely spaced in frequency may appear as onlyature they can resolve peaks that overlap to a large extent
single peak in ReX(w)]), and itis adversely affected by leakagehe 1D frequency spectrum);
effects (for instance, the area under a peak at frequenayay (i) owing to their adaptive nature these methods are almos
be a rather poor estimate af owing to leakage from a strongerleakage-free (they can even be applied in the presence of tt
component at a frequency different fraog). water signal); and

Problem (b) above is exacerbated for NMR signals. For such('v) they provide estimates not only @b} bu_t also O.f{ak} )

. : and{ay}; moreover, the accuracy of these estimates is compe
signals the overlapping between the true spectral peaks, owmg . . .
. rable with that corresponding to a good parametric approac
to nonzero damping factors, may worsen the already poor reso- . . o

. . (such as the NLS outlined above), under the ideal conditior

lution of the FT. Moreover, leakage from the water peakHn . . .

; - . that the data model in [1] holds (required by the parametric
spectroscopy, if not carefully eliminated by data preprocessn;:ﬁj

. L roach).

may have a detrimental effect on the estimation accuracy 10f
the other spectral peaks. Additionally, note that the FT does notwWhen we add to the above features the robustness of the no
provide any direct estimate of either the amplitu¢igg or the parametric methods to mismodeling and reiterate the fact th:
damping factorgoy}. these methods do not require any a priori information about

One reason for all these drawbacks of the FT is that this @pbecomes quite clear that the novel nonparametric approach
proach yields 1D frequency spectra and hence ignores the infiblis paper is a valid alternative to the parametric approach fc
mation that the (noise-free) data consist of damped sinusoitl$IR spectroscopy.
as opposed to pure sinusoids. A first step toward mitigating the
problems of the classical FT is to introduce a 2D FT approach 2. THE 2D FILTER BANK APPROACH
that is based on 2D spectra versus both frequandgdamping.

In the next section we derive the 2D FT in the general frameworkLet

of thefilter bank approaci{FBA). As we explain there the 2D

FT does not eliminate completely the problems of the 1D FT y(t) = [x(t)---xt +M —-1)]", t=1,2,...,L, [4]
due to the fact that the filter bank corresponding to the 2D FT is

still nonadaptive|i.e., data independent). To fully eliminate thevhereM > 1 is a user parameter (the choice of which will be
aforementioned problems we need to take a second step anddiseussed under Numerical Examples), and

anadaptive(i.e., data dependent) filter bank approach. Two most

well-known adaptive FBA methods for 1D frequency spectrum L=N-M+1 [5]
estimation are:

e CAPON @8, 9 (named after the author o8 who intro-
duced it); and

e APES (0, 11 (APES is an acronym foamplitude and
phaseedimation).

Also, leth(a, w) € CM*! denote the coefficient vector of an FIR
filter (to be applied tdx(t)}) which is such that:

(C1) the damped sinusoithe—**1)!} passes undistorted
through the filter; and

(C2) other components in the data(t)} (for example, the

Similarly to the 1D FT, both CAPON and APES could baoise and other damped sinusoids) are suppressed as much
applied directly to the NMR signal to obtain estimateg®f}, possible by the filter.
but this wouldnot be advisable since the information that the Note that such a filter must depend @@andw, a fact which
signal comprises damped sinusoids would again be ignored\{ias indicated above by the use of the notatigam, »). Also
particular, no direct estimates Hy} or {ak} could be obtained note that asr andw vary {h(e, )} will form a bank of filters
in this way, as explained above for the 1D FIR)this paper we which givesthe name of FBAto the approach basegh@m, »)}.
develop new extensions of the CAPON and APES approacBhssuming thah(«, ) is available we can write the filter output
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as criterion,

h*(o, w)y(t) = a1 L y(t), t=1,2...,L, [6] E (e, @)y(t) — &(a, w)el-etion |2
t=1

where the superscript denotes the conjugate transpose, and
w(t) is a residual term. The LS estimate of the amplitada
[6] is (for givena andw)

@, @)yt - (e, )L (a)

“(@, 0)y(t)? — E(e, o). (12]

L
DI
t=1
L
DI
a(o, w) = h* (o, 0)Y(a, w), [7] t=1
However, we dmotrecommend this way of estimatifig@y, wk}-
A general reason for this (not necessarily related to NMR appli
cations) can be explained as follows. Let us assume, for the sa
1 & e iw of making our point, that for some giver,(w) the left-hand
Y(w 0) = L@ > Iy e [8]  side of [6] is very smallh*(@, @)y(t) ~ 0 (fort = 1, ..., L).
t=1 This means that there is hardly any damped sinusoid in the da
at this particular damping-frequency pair, (). A consequence
and where of this is that the LS criterion in [12] will take on a very small
value at &, w), and hence this pair may well be preferred to
L —20l _ a true damping-frequency pair at which the criterion [12] may
L)=) e> = e_zae,Tll- [9] have alarger value.
t=1 e - In summary, estimatindoy, wx} by picking the dominant
peaks of the energy spectrufi«, ») is a more sensible thing
Note that the numerator in [8] can be evaluated as a functiontofdo than picking the deepest valleys of the criterion in [12].

w, for each value o considered, by using an FFT algorithm.
Let

where

Next we turn our attention to the conditions C1 and C2 abov:
that must be satisfied by«, w). Satisfying C1 is easy. Let

E(e, ®) 2 |a(a, )L () [10] S(a, w) = [Le eHe. .. gerialM-1]T, [13]

_ _ When the filteth(e, ) is fed withag~*+)t its output is given
denote the FBA 2D (estimatedhergy spectrunThe FBA esti-

mates{ay, wx} are obtained as the locations of the dominant

peaks of E(x, w) (note thatn is also estimated in the pro- [h*(a, )S(er, w)]aeeHor, [14]
cess of peak picking) and the estimates{af} are given by
(& = a(ax, o)} It follows that C1 is satisfied if and only if

Remark 1. We might think of using the estimatednplitude h*(«, w)s(a, ) = 1. [15]

spectrum Ao, o) 2 |&(a, w)| to obtain the estimategy, @y}

Under Numerical examples this possibility is examined ardnlike C1, there is no unique way to formulate C2 mathemat
the results show that the energy and amplitude spectrum-bagedly. In the next subsections we show how different ways o
methods give similar results. However, the estimates obtainfedmulating C2 lead to different FBA methods. Here we note tha
using the amplitude spectrum are slightly worse for low SN#e importance of C2 cannot be emphasized enough. If the filt
cases and therefore the energy spectrum was preferred (see, sighificantly enhances the currently considered damped sinusc
Fig. 7 and Fig. 8). at (v, w), then the SNR for this component in the filter output
[6] will be much higher than in the raw data. Consequently, the
estimation of{ay, ax, wx} may well be done more accurately
from the filtered data than from the raw data, despite a loss i
the number of data samples (there Ere- 1 more data samples
[11] inthe raw data¥. This is thebasic ideaunderlying the FBA.

Remark 2. As already stateél(«, w) in [7] is the minimizer
of the LS criterion:

| 2

L
Z |h*(a, w)y(t) — ad—otot
t=1

. . . A . . 2 Observe that, owing to the manner in which we implemented the filtering
Then we might think of insertin@(«, ) in [11] and estimate (see [4]-[5]), we lose samples from the tail of the data string. As the SNR o
the corresponding paii( ) by minimizing the resulting LS those samples is typically rather low, this is not a big loss.
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21. 2DFT problem in [19] and [20] is given by (see, e.@, 0))
The 2D FT corresponds to the choice 4
R™s(«, w)
heapoNe, ®) = — —1 : (23]
S(a, w) s*(a, ) R71s(er, w)
her(e, w) = ————., [16]
lIs(et, @)l
Note that
where
1 0 1
e2eM _ 1 e« ge
IS(er, @) [1? = = [17] (o, ) = . : , [24]
0 e—(M-1) eiw(M—l)

Obviously [16] satisfies the condition C1 in [15]. However, the

above filterh , w) does not have good rejection properties : : .
Fr (e ) g ) Prop pere [1€¢...&“M-D]T is the 1D FT vector. Hence, for

(see C2). In particular, note that [16] is nhonadaptive and hent/@®re o )
a strong component with damping and frequency different frofily divéna, we can redefind}™" appropriately and compute

(o, w) may well leak through the filter and seriously disturb thBcapon(@. ?‘)) and the correspondirgfc, “,’) n [_7] as functions
estimation of the amplitude ak (). To alleviate this leakage °f « by using the fast 1D CAPON algorithm ia2).
problem we should considadaptivefilters, as described in the
next subsections. To end this subsection we remark on the fact 2.3. 2D APES
that forM = 1 the present approach reduces to the “nonaver-|n the 2D APES approach C2 is formulated in words as fol-
aged” (or “nonsmoothed”) 2D FT, lows: h(«, ®) should be such that the filter outpluit(c, w)y(t)

' is as close as possible in the LS sense to a damped sinusc
SN [x(t)et]eiot ad—*+o)t with the given damping and frequency, () and

Zthl g2t amplitudea that minimizes the LS fitting error. Mathematically,
for givena andw, we obtainhapeda, @) and dapeda, w) by

which, in turn, reduces faz = 0 to the classical 1D FT in [3]. Minimizing the LS criterion,

(o, w) = , [18]

2.2. 2D CAPON

The filter bank associated with the 2D CAPON method is the
solution to the following design problem,

L
3 (e )y(t) — adetion 2 [25]
t=1

subject to the condition C1 (see [20]). The 2D APES estimats

&L 5 of a(e, w) is readily seen to have the form of the general FBA
i Z [h*(a, @)y(1)] [19] estimate in [7]. Inserting [7] in the criterion function yields
=1
L
SUbjeCt to the condition C1, Z |h*((¥ Cl))[y(t) _ Y(O( w)e(—ot+iw)t] ’2
t=1
h*(a, a))S(O(, a)) =1 [20] — h*(Ol, a))[R . 2L(Ol)Y(Ol, a))Y*(Ol, a))
The criterion in [19] can be rewritten as + L(@)Y (o, ©)Y* (e, w)]h(ex, w)
L = h*(ar, 0) Q(a, w)h(w, w), [26]
> Ih* (@, w)y()1* = h* (e, w) RWe, w), [21]
=1 where
where Qa, w) = R — L(a)Y(a, w)Y*(t, ). [27]
L . . . .
R— Z yOY* (D). [22] It follo_ws thathapeda, w) is the solution to the following opti-
— mization problem,

Minimization of the sample energy of the filter output as in [19], min h*(«, @) Q(o, w)h(w, w)
under C1, should yield a filter with good rejection/enhancing (o)
properties. The solution to the linearly constrained quadratic subject toh*(«, w)s(ax, w) = 1, [28]
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which has same form as the CAPON filter design problem (with 3. NUMERICAL EXAMPLES
the only difference thaR in [21] is replaced byQ(«, w) here). _ _ _ _
Hence, the solution to [28] is similarly to [23] given by In this section 2D CAPES is applied to both real NMR data

and simulated data with the objective of examining its resolutiot

0 e, w)s(er. ) 2 properties and estimation accuracy.

s* (@, 0) Q7 Ha, ®)s(at, @) Simulated Signal Examples

hAPES =

To avoid the calculation of the inverse in [29] for every pair 'St the high resolution of the 2D CAPON energy spectrur

(o, ) considered, we use the matrix inversion lemma (see, ellrafllustrated using a simulated two-peak example with the pa
(8)) to write ameters (see the model in [1])

RIL()Y (o, 0)Y*(at, 0)R7L wy = 0.1885 w, = 0.2136

-1 -1
QH(xw) =R+ — L@V (@ )R Y(@.0) (30] a1 = 0.016Q  «, = 0.0260
a; = 1.000Q a, =2.5000
Combining [29] and [30] gives a formula for the 2D APES filter N — 512
bank that is not much more computationally involved than the
formula in [30] corresponding to the 2D CAPON. 02 =0.001Q [31]
24. 2D CAPES wheres? denotes the variance of the white, circular, Gaussial

noise sequence(t). The real value of the 1D FT spectrum of

There is empirical evidence (see, e.d3)(for the undamped the simulated signal is plotted in Fig. 1. From the figure it s clea
sinusoid case) which suggests that CAPON has a (slightiyht the two closely spaced peaks are not resolved by the 1D F
higher resolution than APES and also that the CAPON estimaiefs possible to improve the resolution of the 1D FT by using
of the {ax, wx} are more accurate than the APES estimates phrenz-to-Gauss transformation of the time domain data:
these parameters. On the other hand, for a given set of estimates
{ax, @} in the vicinity of the true valuesay, wi}, the APES Xg(t) = x(t)e*ot—Fet’, [32]
estimates of the amplitudéay} are (much) more accurate than
the CAPON estimates dgx}. Consequently, the nonparametre pest possible resolution is obtainedqfis set equal to the
ric approach we propose for NMR spectroscopy conS|s_ts of tpﬁ(} of the peaks in the data. Since in general {iag are not
following combination of 2D CAPON and 2D APES, which Wegentical and they are also unknown, the choice of a sui@ble

call 2D CAPES. is not straightforward. In practice, the user has to tunegtsnd

Nonparametric NMR Spectroscopy via 2D CAPES

Step 1. Obtain estimates ofwy, wy} as the locations of .| O an erea 10T ||
the dominant peaks of the 2D CAPON energy spectrul "

INEapon(@. @)Y (o, @) 2L (@) with heapo(er. @) given by [23] x 1
andY («, w) by [8] and [9]. Note that the required peak picking, o4} s ]
atthe level of SNR encountered in NMR applications, is usuall ;. !
easily done (see the illustrations under Numerical Examples) o '

Step 2. Estimate the amplitudgsy} aséx = hipedax, @)
Y (ak, wx), where{ag, @} are the estimates &, wy} obtained
in Step 1, andapeda, ) is given by [29] and [30]. o2r

The computational burden of 2D CAPES is similar to that 0 o.s}
2D CAPON and hence smaller than that of the 2D APES. Eve
S0, as already stated, the statistical performance of 2D CAPI
is typically better than that of both 2D CAPON and 2D APES. °%[

Compared with the 1D nonparametric approach (suchast oF7~<7%7 1/ ' = R A
1D FT), the computational burden of our 2D CAPESisofcours ;o017 o5 0z os 03  om o7 s 05
(much) larger. In fact to keep the computational burden of 2L ©(rads)

CAP_ES under _a_ reasonable limit a careful |mple_mentgt|0n 'SF1G. 1. Real value of the 1D FT spectrum for the simulated two-peak ex-
required.An efficient Matlab code for 2D CAPES is availablempie:a, = 1,a, = 2.5, w1 = 0.1885,wp = 0.2136,a1 = 0.016,a = 0.026,
from the authors on request. N =512.

Re(Y(w))

0251
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 (rad/s)

FIG.2. 2D CAPON energy spectrum for the simulated two-peak exaraple; 1,a, = 2.5, w; = 0.1885,w; = 0.2136,03 = 0.016,2 = 0.026,N = 512,
M = 240.

Bo parameters by hand to obtain an enhanced resolution. In Figuhs using different filter length$4. The variance of the noise
the 1D FT of the so-called Gaussian-filtered data in [32] is alsgas chosen so that the SNR for peak 1 was 15 dB where th
plotted. Note that the parameters were tuned to obtain the hi@NR is defined as the ratio of the power of the component to th
est possible resolution resulting in a slight improvement ovabise power:

the 1D FT spectrum. In Fig. 2 the corresponding 2D CAPON

energy spectrum using a filter length Bf = 240 is plotted. 1
The high resolution of 2D CAPON is illustrated by the ability N
to resolve the two peaks boththe frequencyandthe damping

dimensions. To allow the reader to appreciate the resolution Jdre estimated root mean square error (RMSE) and bids of
pabilities and to simplify the comparison of the peak locatiorsndw; are given in Fig. 5 and Fig. 6, respectively. The results for
with the true parameters the same 2D spectrum seen from ab@yévere similar to the results fa; and are therefore omitted. It
is plotted in Fig. 3. Finally the 2D CAPON spectrum viewe@an be seen that the bias of the estimates, as expected, decre:
from the frequency axis (taking the maximum value of the efs a function of the filter length. At the same time the variance
ergy in the damping dimension for each frequency grid poingf the parameter estimates increases as a function of the filt
can be found in Fig. 4. Note that this last plot does not contaigngth. However, since the variance increases relatively slowl
all the information available in the 2D energy spectrum but cayovmpared to the decreasing bias, the RMSE error curves a
still be useful for comparison with the commonly used 1D Fleasonably flat for sufficiently high filter lengths (i.e., fir
spectrum in Fig. 1. In summary, this simple example shows tHatge enough to resolve the two peaks). It is in fact evident tha
the resolution of the CAPON energy spectrum is much highgite optimal filter length increases as the frequency separatic
than that of the 1D FT even if the data are Gaussian filtered. Thetween the peaks decreases. Therefore the choice of a relativ
choice of the CAPON user parametdt, is also much simpler large M is recommended in general (in practice betwé&gts
than the choice of the parameters associated with the GaussiadN /2). For difficult scenarios the filter length can be choser
filtering procedure in [32]. close to the upper limiN /2.

Next the influence of the user parameté(i.e., the FIR filter ~ Finally the estimation accuracy of the 2D CAPES method is
length) on the estimation accuracy is examined. The choiceasimpared to the CRB. Estimates of the parameters of peak 1
filter length is based on a trade-off between the resolution capa-= 0.1885 (forw, = 0.2199) were obtained from 100 inde-
bilities and the variance of the parameter estimates. To illustrgendent simulation runs for different noise levels using a filtel
this trade-off the frequency separatiakp 2 wy — w1, in the length ofM = 180. The results fax, anda; are given in Fig. 7
above two-peak example was varied. Estimates of the pararapd Fig. 8, respectively. Note that results obtained from bott
ters of peak 1 were obtained from 100 independent simulatitire amplitude spectrum and the energy spectrum are given, f

N
3 las?e 2 /62 = SNR [33]
t=1
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FIG. 3. Top view of the 2D CAPON energy spectrum for the simulated two-peak example: 1, a, = 2.5, w3 = 0.1885,w; = 0.2136,017 = 0.016,
a2 = 0.026,N =512,M = 240.

comparative purposes. The figures indicate a slightly lower biakng errors). The RMSE (based on the energy spectrum) of 2
for estimates obtained by the energy spectrum, thereby suggEAPES is seen to be also reasonably close to the CRB.

ing that the energy spectrum should be the preferred choice (see

Remark 1 under The 2D Filter Bank Approach). The parametiReal NMR Signal Examples

NLS method (e.g.4, 2)) is expected (but not guaranteed) to have

. . .~ Inthis section the resolution capability of the 2D CAPON en-
an accuracy close to the CRB under the above ideal S|mulat|8n spectrum is compared to that of the commonly used 1D E
conditions (i.e., white, circular, and Gaussian noise and no mocirgy P P y

041
. . . —% Aw=0.0188
-6 Aw=0.0211
2r b 0.3 - Aw=0.0251
—— Aw=0.0314
1.8¢ 7 o2k
161 g
0.1
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7" M
g
1 - -
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@
T |-
So.15
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o . 0 ) \ ! ! | ! N
‘ ‘ ‘ ‘ . ‘ ‘ ‘ . ‘ 50 80 100 120 140 160 180 200 220 240
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
o (rad/s)

FIG. 5. RMSE and bias of 2D CAPES amplitude estimates as a functior
FIG. 4. 1D frequency view of the 2D CAPON energy spectrum for thef filter length M for different frequency separatiodsw in a two-peak simu-
simulated two-peak exampla; = 1,a, = 2.5, w1 = 0.1885,w2 = 0.2136, lation example. The results were obtained from 100 simulation runs for eac
a1 = 0.016,a2 = 0.026,N = 512, M = 240. combination ofM andAw.
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FIG.8. RMSE and bias of 2D CAPES amplitude estimatigs£ 180) as

FIG. 6. RMSE and bias of 2D CAPES frequency estimates as a functigiynction of SNR for the two-peak simulation example. The estimates wer
of filter length M for different frequency separatiodsw in a two-peak simu- obtained from 100 simulation runs for each SNR level using both the energ

lation example. The results were obtained from 100 simulation runs for eascﬁ]ectrum and the amplitude spectrum. The RMSE is also compared to the CR
combination ofM andAw.

using real NMR data sets. Since the model and noise assur%cqnner eq_wpped with 40 mT/m gradients at a 150 T/m/s sle
rate. The single-voxel acquisition protocol on the scanhéy (

tions can no longer be expected to hold exactly, these examp &S lements a PRESS4) excitation, preceded by CHESS5]

provide a more realistic comparison between the methods. -Ilvl\qlg'zer suppression. Timing parameters were-TE4 ms and
first data set is taken from a standard GE spectroscopic phantP bp ' gp

with a low-concentration additional GABA solution. The phan; R= 1500 ms, and voxel size was 8 cc. Reference data (8 FID:

fom contains 12.5 mM NAA, 10.0 mM Cr. 3.0 mM Ch, 7.5 thwo averages each) were acquired without water suppressio

ml, 12.5 mM Glu (-glutamic acid), 5 mMactate, and 0.5 mM while _the rg(;tlzi?gllte data were acqumra]d V_Vl_lrt]h CHESSIV\éate;SL.]g
GABA. Data were acquired on a 1.5-T GE Signa clinical MR?resSIOn ( S, two averages eac )- The spectral bandwi

' ' was 2500 Hz;N = 2048 points were sampled for each read-
out. The metabolite data were phase-corrected by subtracting tl

i estimated phase obtained from the high-SNR reference sign

i e (see, e.g.,17, 18). In Fig. 9 the phase-corrected 1D FT spectrum

3,\ 7 ppeiwdespectum | for the region of interest is given where the peaks identified by
ma': \\ numbers correspond to the following: 1,Bycinositol; 2, 7,

2.5l \,, creatine; 3, 4, 12-15, glutamate; 6, choline, 8-11, 16, NAA; ant
. f‘xam_xm '“*“-'4:;}_.___1_% 17, 18, lactate (the lactate peaks are negative fo=TE4 ms

ail T Al due to the coupled spin). Note that Gaussian filtering was af;

ol i L _————————4 plied to the data but since no significant resolution enhanceme

? " ® swem o # * could be observed the corresponding 1D FT spectrum was n
107 included. InFig. 10the 2D CAPON energy spectrivh £ 950)

; ' ' ' for the same signal is given. The resolution is much enhance

sk ——fnpiucespeaunll - compared to the 1D FT spectrum. Note in particular the re

gion between 2.1 and 2.8 ppm where the small-amplitude NAA

g 1 and glutamate peaks are nicely resolved. It is also interestin
osl \H____ | to note that the 2D CAPON spectrum shows that the residue
e water peak consists of more than one damped sinusoid where

o} - = __'_‘:t:*;'; N © the other peaks seem pretty well described by single dampe
SNR (3B} sinusoids. That kind of information can not be deducted from

_ _ _ the 1D FT spectrum. Furthermore this proves the robustnes

FIG. 7. RMSE and bias of 2D CAPES damping estimaties £ 180) as . .
a function of SNR for the two-peak simulation example. The estimates we?é O!JI’ nonparametrl_c appro"’_‘Ch as compared to param_etrlc es
obtained from 100 simulation runs for each SNR level using both the energj@tion methods which require the use of postprocessing wat
spectrum and the amplitude spectrum. The RMSE is also compared to the CBRBppression techniques to handle the model imperfections of tt
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residual water peak. The high resolution in both the frequenc
and damping domains can also be seen in Fig. 11 where tt
same 2D CAPON spectrum is plotted viewed from above. Fo
completeness the 2D CAPON spectrum is also plotted as viewe
from the frequency axis in Fig. 12. Even though the resolutior
cannot be fully appreciated using this 1D view the resemblanc
with the 1D FT spectrum in Fig. 9 gives some insight and may
be useful to identify the peaks for spectroscopists more famil
iar with standard 1D FT spectra. We remind the reader that th
height of the peaks in the 2D CAPON energy spectrum shoul
not be considered direct estimates of the energies (or indire
amplitude estimates). In fact, when applying the 2D CAPES al
gorithm, only the frequency and damping estimates are obtaine
from the 2D CAPON energy spectrum. The amplitude estimate
are instead obtained using the 2D APES algorithm (see Step 2
the 2D CAPES algorithm in the previous section), and these est
55 5 45 4 35 3 25 2 15 1 mates are usually significantly better. In Table 1 the CAPON an

PP CAPES amplitude estimates are given for the dominant peal

FIG.9. Phase-corrected 1D FT spectrum obtained from astandard GE sp@e-7, and 16. The theoretical amplitude ratios of these peal
troscopic phantom. The phantom contains 12.5 mM NAA, 10.0 mM Cr, 3.0 migan be computed since the concentrations of the contents of t
guence (TE/T??: 144/1508ums) preceded by CHgSS water suupprgssion (vongE: 144 ms; therefore, due to t.he dlﬁer.em reIax.atlon time:
size 8 cc). The peaks identified by numbers correspond to the following: 1; ,the metabolites, the actual ampl'tl"de ratios are different fror
myeinositol; 2,7, creatine; 3,4, 1215, glutamate; 6, choline; 8-11, 16, NAAhe theoretical values. This makes an exact comparison of tf
and 17,18, lactate. estimated amplitude ratios rather difficult. The results, howeve

1718

ppm

FIG. 10. 2D CAPON energy spectrunM = 950) obtained from a standard GE spectroscopic phantom. The phantom contains 12.5 mM NAA, 10.0 mM
3.0mM Ch, 7.5 mM ml, 12.5 mM Gluglutamic acid), 5 mM lactate, and 0.5 mM GABA. The signal was acquired on a 1.5-T GE Signa scanner using a PR
sequence (TE/TR 144/1500 ms) preceded by CHESS water suppression (voxel size 8 cc). The peaks identified by humbers correspond to the followir
myainositol; 2,7, creatine; 3,4, 12—15, glutamate; 6, choline; 8-11, 16, NAA; and 17,18, lactate.
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FIG. 11. Top view of the 2D CAPON energy spectrurkl (= 950) obtained from a standard GE spectroscopic phantom. The phantom contains 12.5r
NAA, 10.0 mM Cr, 3.0 mM Ch, 7.5 mM ml, 12.5 mM Glu<{glutamic acid), 5 mM lactate, and 0.5 mM GABA. The signal was acquired on a 1.5-T GE Signr
scanner using a PRESS sequence (TEATRI4/1500 ms) preceded by CHESS water suppression (voxel size 8 cc). The peaks identified by numbers corre:
to the following: 1,5myainositol; 2,7, creatine; 3,4, 12—-15, glutamate; 6, choline; 8-11, 16, NAA; and 17,18, lactate.
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FIG. 12. 1D frequency domain view of the 2D CAPON energy spectrum FIG.13. Phase-corrected 1D FT spectrum from the anterior cingulate gyrus

(M = 950) obtained from a standard GE spectroscopic phantom. The phanigft 29-year-old healthy male subject. The signal was acquired ona 1.5-T G
contains 12.5 mM NAA, 10.0 mM Cr, 3.0 mM Ch, 7.5 mM ml, 12.5 mM GluSigna scanner using a PRESS sequence (TE/BR/2000 ms) preceded by
(-glutamic acid), 5 mM lactate, and 0.5 mM GABA. The signal was acquiredHESS water suppression. The spectral bandwidth was 2500 Hz; 2048 poin
on a 1.5-T GE Signa scanner using a PRESS sequence (FEIBR/1500 ms) Were sampled for each readout, the voxel size is 6 cc, and the total acquisitic
preceded by CHESS water suppression (voxel size 8 cc). The peaks identiflgtf IS 2 min 40's. The peaks identified by numbers correspond to the following
by numbers correspond to the following: 1rBycinositol; 2,7, creatine; 3,4, h:,Acreatlne; 2-4, 13-15, glutamatengyoinositol; 7, choline; and 9-12, 16,

12-15, glutamate; 6, choline, 8-11, 16, NAA; and 17,18, lactate.
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0.015

ppm

FIG.14. 2D CAPON energy spectrunM = 1000) from the anterior cingulate gyrus of a 29-year-old healthy male subject. The signal was acquired on a 1
GE Signa scanner using a PRESS sequence (TE/3®R2000 ms) preceded by CHESS water suppression. The spectral bandwidth was 2500 Hz; 2048 p
were sampled for each readout, the voxel size is 6 cc, and the total acquisition time is 2 min 40 s. The peaks identified by numbers corresponditmthe fc
1,8, creatine; 2—4, 13-15, glutamaten®joinositol; 7, choline; and 9-12, 16, NAA.

ppm

FIG. 15. Top view of the 2D CAPON energy spectrud (= 1000) from the anterior cingulate gyrus of a 29-year-old healthy male subject. The signal w
acquired ona 1.5-T GE Signa scanner using a PRESS sequence FBA/R000 ms) preceded by CHESS water suppression. The spectral bandwidth was 2500
2048 points were sampled for each readout, the voxel size is 6 cc, and the total acquisition time is 2 min 40 s. The peaks identified by numbersctireespo
following: 1,8, creatine; 2—4, 13-15, glutamatenyoinositol; 7, choline; and 9-12, 16, NAA.
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TABLE 1 correspond to the following: 1,8, creatine; 2—4, 13-15, gluta:

CAPON and CAPES Amplitude Estimates for the Main Peaks of ~mate; 5myacinositol; 7, choline; and 9-12, 16, NAA. Note that
the GE Spectroscopic Phantom Spectrum Displayed in Fig. 10 the spectrum is relatively noisy and that the resolution is quite
poor. The resolution was not visually improved using Gaussial

CAPON CAPES Expected . ; " ~ )
ratio (TE=0) filtering (which therefore was omitted from the figures). The
Peak Substance & & /87 £ /87 a/ay 2D CAPON spectrumNl = 1000) is plotted in Fig. 14 and
16 NAA 1562 1P 105 39210 129 13 the same spectrum seen from .above is displayed in Fig. 15.
7 Creatine #7x10f 1 203x 10F 1 1 can be seen that all the identified peaks are resolved and es
6 Choline 141x10f 0.96 257x10° 0.84 0.9 mates of the frequency and damping parameters can easily |

obtained. Note that afilter order closeNg2 was used to achieve

this high-resolution spectrum. For comparison the 2D CAPON
) ) ) ) spectrum is also shown as viewed from the frequency axis i
confirm that the CAPES amplitude estimates are likely to tﬁg_ 16. Even though this 1D view of the 2D spectrum shows
better than the CAPON amplitude estimates as the CAPES allipetter resolution than that of the 1D FT it is clear that the
plitude ratio estimates are closer to what could be expected HHiIity to separate the peaks in two dimensions is essential fc

the spectroscopic phantom data. _ visualizing the spectrum of such difficult, realisiicvivo NMR
Finally we consider a set of vivodata taken from the anterlorsigna|s_

cingulate gyrus of a 29-year-old healthy male. The signal was
acquired on a 1.5-T GE Signa scanner using a PRESS sequence
(TE/TR=35/2000 ms) preceded by CHESS water suppression. 4. CONCLUDING REMARKS
Reference data (8 FIDs, two averages each) were acquired with-
out water suppression, while the metabolite data were acquired’he 2D CAPES method provides a 2D interpretation of NMR
with CHESS water suppression (32 FIDs, two averages eacspectroscopy data by separating the resonance peaks in both:
The spectral bandwidth was 2500 HY; = 2048 points were frequency and the damping domain. The resolution propertie
sampled for each readout. The voxel size was 6 cc and tadisé much better than those for the 1D FT even if resolution en
acquisition time was 2 min 40 s. The phase-corrected 1D Fhncement techniques such as Gaussian filtering are applie
spectrum is plotted in Fig. 13. The peaks identified by numbeTsie 2D spectrum does not require any phasing or baseline co
rection and does not suffer from any data truncation baselin
effects. Furthermore, the choice of its user parameNkr,s
o much simpler than the choice of the parameters involved witl
2or 8 other techniques such as Gaussian filtering. The method is su
able for visualizing most kinds of NMR signals. In particular it
7 can be very useful for low-field NMR spectroscopy where the
SNRis low orin cases where there is a strong water signal whic
severely distorts the 1D FT spectrum.
The parameter estimates obtained by the nonparametric 2
CAPES method are comparable to those obtained by the be
parametric methods (such as the NLS). Compared with the la
ter, 2D CAPES has the significant advantage of being robust t
1 mismodeling. The 2D CAPES method can be used as a stan
alone estimation method or in combination with some paramet
O ric methods. In the latter case 2D CAPES can provide estimate
of the frequency and damping parameters that could be used
initial values for the nonlinear search associated with the NLS
algorithms.
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FIG. 16. 1D frequency domain view of the 2D CAPON energy spectrum ACKNOWLEDGMENTS

(M = 1000) from the anterior cingulate gyrus of a 29-year-old healthy male
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spectral bandwidth was 2500 Hz; 2048 points were sampled for each readpubyviding the spectroscopic phantom data sets as well as giving advice ar
the voxel size is 6 cc, and the total acquisition time is 2 min 40 s. The peat@mments about the “Numerical Examples” section. Furthermore the authot
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